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A new model for analysing the temperature evolution of anisotropic

displacement parameters (ADP's) is presented. It allows for a separation of

temperature-dependent from temperature-independent contributions to ADP's

and provides a fairly detailed description of the temperature-dependent large-

amplitude molecular motions in crystals in terms of correlated atomic

displacements and associated effective vibrational frequencies. It can detect

disorder in the crystal structure, systematic error in the diffraction data and the

effects of non-spherical electron-density distributions on ADP's in X-ray data.

The analysis requires diffraction data measured at multiple temperatures.

1. Introduction

There are two intrinsic and complementary aspects to atomic

motion: energy and displacement. Correspondingly, there are

two main techniques to investigate motion: spectroscopy and

diffraction. In this work, the focus is on atomic displacements

in crystals. Their mean square expectation values are deter-

mined routinely in crystal structure analysis and illustrated in

structure drawings with the well known anisotropic equi-

probability ellipsoids (see Fig. 4 for an example). Mean square

displacements or anisotropic displacement parameters

(ADP's) re¯ect the time- and space-averaged distribution of

an atom around its mean position in the crystal lattice but say

nothing about the relative phases of atomic displacements. In

crystallographic practice, ADP's are usually found to be

composite quantities with contributions from motion (libra-

tion, translation, internal vibrations), from disorder (static or

dynamic) and from systematic error (in the data or in the

re®nement model). This raises the questions of what infor-

mation about motion can be extracted from ADP's and how

the various contributions can be separated. At ®rst sight,

answering these questions may appear as an almost hopeless

task!

Among the many models developed to describe the motion

of atoms in crystals, lattice dynamics is the most complete and

rigorous but also the most complicated one (Born & von

KaÂrmaÂn, 1912; Born & Huang, 1954). It is based on the theory

of displacement waves travelling in a ®nite unbounded crystal.

The computation of ADP's from displacement waves is

straightforward; the reverse problem is ill determined; in

practice, the computational complexities rapidly increase with

the number of atoms in the unit cell (Pawley, 1986).

A simpler much more local model is available for crystals

built from molecules that may be considered as rigid bodies

(Cruickshank, 1956a,b; Schomaker & Trueblood, 1968). This

model has been widely used to extract mean square ampli-

tudes of translational and librational oscillations from

experimentally determined ADP's at a single temperature. An

extension of this approach is the segmented-rigid-body model

in which speci®c intramolecular motions are also taken into

account (Johnson, 1970a; Dunitz & White, 1973; Trueblood,

1978; Trueblood & Dunitz, 1983; Schomaker & Trueblood,

1998; He & Craven, 1985, 1993; BuÈ rgi, 1989). The information

available from ADP's is insuf®cient to fully characterize these

models (Schomaker & Trueblood, 1968); in addition, the

degree of indeterminacy increases rapidly with the complexity

of the model, i.e. with the number of intramolecular motions

considered (BuÈ rgi, 1989).

An alternative method to analyse ADP's is presented

here. It combines a physical model of the temperature

evolution of ADP's, which is very similar to that used in

lattice dynamics, with a description of molecular motion in

the mean crystal ®eld. It allows one to partition ADP's

measured as a function of temperature into temperature-

dependent and temperature-independent contributions. It is

simpler than the lattice dynamic treatment but more

powerful than the (segmented-)rigid-body model because it

does not suffer from the indeterminacies associated with the

latter. Here the general aspects of the method are described.

Its application to ADP's obtained from neutron and X-ray

diffraction experiments will be illustrated in subsequent

papers (Capelli et al., 2000; BuÈ rgi et al., 2000).

2. Lattice dynamic considerations

A detailed description of lattice dynamical theory is found in

Born & Huang (1954) and Maradudin et al. (1971); here we
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adopt the formulation and notation used by Willis & Pryor

(1975), which may be more familiar to crystallographers; it is

very similar to that used by BruÈ esch (1982). In order to

establish a basis for discussion, it is useful to recall some basic

results of the theory. According to Born & von KaÂrmaÂn

(1912), Newton's equations of motion for the atoms in a

crystal lead to characteristic equations that relate the

frequencies !2
j �q� of travelling waves with corresponding

vectors of correlated mass-weighted atomic displacements

e( jq):

!2
j �q�e� jq� � D�q�e� jq�: �1�

For a unit cell with n atoms, the frequencies !j(q) and the

detailed shape of the normalized displacement vectors e( jq),

each with 3n components, depend on the direction and length

of the momentum propagation vector q of the travelling wave.

In a crystal with N unit cells, there are Nq vectors distributed

regularly in momentum space, i.e. throughout the Brillouin

zone. The mass-adjusted dynamic matrix D(q) depends in a

complicated way on the potential functions associated with the

interaction of all atoms in the crystal and on the atomic masses

(Pawley, 1986).

In the context of crystal spectroscopy, it is the solution of

the eigenvalue equation (1) as a function of q that matters. It

gives rise to 3n dispersion relations !j(q) of which 3 are called

acoustic branches and the remaining 3n ÿ 3 are called optic

branches. Dispersion relations describe the behaviour of

individual phonons along a speci®c q direction. For a three-

dimensional crystal, the number of unit cells and thus the

number of frequencies can be large; this makes numerical

calculations tedious and time consuming.

It is often suf®cient to consider only the frequency distri-

bution function or density of states g(!) of the phonons. In

Fig. 1, the dispersion relations and the density of states for a

monodimensional crystal built of homonuclear diatomic

molecules are shown. In this simple case, there are only two

phonon branches: one acoustic, representing mostly transla-

tional displacements of the diatomic molecule, and one optic,

representing mostly molecular deformation. Note the singu-

larities in the density-of-states function, especially the closely

spaced ones of the optical branch. If there were no dispersion,

the branches could be represented with horizontal lines and

the corresponding density of states with � functions (Fig. 2),

i.e. all phonons in a branch would be degenerate and the

problem could equally well be described in terms of molecules

moving independently of each other. The condition of no

dispersion is the basis of the Einstein model, the ®rst quantum

model for calculating the speci®c heat of a solid (Einstein,

1907). Einstein's original assumption was that each atom in a

crystal moves independently with frequency !E (� Einstein

frequency).

The idea of independent atomic oscillators does not account

for the fact that in molecular crystals atoms belonging to the

same molecule are more strongly tied to each other than

atoms in different molecules. In a modi®ed

Einstein approach, each molecule, instead of each

atom, is considered as a collection of independent

oscillators moving in a potential given by the

average crystal environment [molecular mean ®eld

model (BuÈ rgi, 1995)]. Of course, the condition of

no dispersion is never ful®lled exactly; however, if

dispersion is small throughout a substantial volume

of the Brillouin zone, an Einstein approach

remains a good approximation and allows substi-

tution of the lattice dynamical description with a

molecular one. Equation (1) simpli®es to

!2
j e� j� � De� j�: �1a�

In the notation of molecular spectroscopy, (1a) is

written as

!2
j e� j� � mÿ1=2fmÿ1=2e� j�; �1b�

where f is a force-constant matrix and mÿ1=2

performs the mass adjustment. This relation will be

discussed in more detail below.

3. Mean square displacement matrix

In the context of a diffraction experiment, the

emphasis is on atomic displacements. The total

instantaneous displacement u(kl, t) of atom k in the

unit cell l at time t is given by the superposition of

Figure 1
Dispersion curves and density of states for the acoustic and optic phonons of a
monodimensional crystal built from homonuclear diatomic molecules.

Figure 2
Dispersion curves and density of states for the Einstein model of a monodimensional
crystal built from homonuclear diatomic molecules.



the displacements coming from all 3nN modes of vibration

(phonons):

u�kl; t� � �Nmk�ÿ1=2 P
jq

�Ej�q�=!2
j �q��1=2e�kj jq�

� expfi�q � r�kl� ÿ !j�q�t�g; �2�
where e(k| jq) represents the kth component of a normalized

complex eigenvector e( jq) (known also as polarization vector

of atom k in normal mode j along the wavevector q). The

quantity �Ej�q�=!2
j �q��1=2 is the absolute amplitude of mode

( jq). The average energy Ej�q� is given by the quantum-

mechanical expectation value:

Ej�q� � h- !j�q� 1
2� exp�h- !j�q�=kBT� ÿ 1

ÿ �ÿ1
� 	

� �h- !j�q�=2� coth�h- !j�q�=2kBT�: �3�
The second term in the curly brackets is the expectation value

of a quantized lattice vibration jq for a system in equilibrium

at temperature T, i.e. the number of phonons in the state q (kB

is the Boltzmann constant and h- is the Planck constant divided

by 2�).

Diffraction intensities depend on the mean square dis-

placement amplitudes (MSDA) rather than on the instan-

taneous displacements (Willis & Pryor, 1975):

U�k� � hu�kl; t�u��kl; t�Ti: �4�
For each atom k, the MSDA's form a symmetric 3 � 3 matrix

that can be expressed in terms of (2) and (3):

U�k� � �Nmk�ÿ1 P
jq

�Ej�q�=!2
j �q��e�kj jq��e��kj jq��T : �5�

A more general expression, which also includes the inter-

atomic or correlation mean square amplitudes between

different atoms k and k0, is

U�k; k0� � �Nm
1=2
k m

1=2
k0 �ÿ1

P
jq

�Ej�q�=!2
j �q��e�kj jq��e��k0j jq��T :

�6�
The atomic and interatomic mean square displacement

amplitudes taken together de®ne the molecular mean square

amplitude matrix Rx. The atomic displacement parameters

U�k� � U�k; k� are its diagonal 3 � 3 blocks and can be

determined from single-crystal diffraction experiments, at

least in principle. The interatomic or correlation mean square

amplitudes U�k; k0� are its off-diagonal 3 � 3 blocks. They are

not accessible through single-crystal diffraction experiments,

not even in principle. All elements of Rx may be calculated

from potential functions and compared with ADP's from

diffraction (Gramaccioli et al., 1982; Gramaccioli & Filippini,

1983).

With the no-dispersion approximation, i.e. the modi®ed

Einstein model, the sum over all normal modes jq in the

crystal reduces to a sum over the normal modes of a molecule:

U�k; k0� � �m1=2
k m

1=2
k0 �ÿ1

P
j

�h- =2!j� coth�h- !j=2kBT�

� e�kj j��e��k0j j��T; �7�

where !j stands for an effective frequency representative of an

average over the Brillouin zone and e�kj j� for the corre-

sponding displacement vector. In the notation of (1b), the

atomic mean square displacement matrix is

Rx � mÿ1=2 e d eTmÿ1=2; �8�
where m is a diagonal matrix of atomic masses, e is the matrix

of all eigenvectors and d is a diagonal matrix whose elements

are the mean square amplitudes of the normal modes; they

depend on vibrational frequencies and temperature according

to �j � �h- =2!j� coth�h- !j=2kBT� [see equation (3)]. We return

to Rx below, after a short digression on coordinate systems in

the next section.

4. Coordinates

ADP's are usually expressed in terms of positional displace-

ments in the directions of the unit-cell axes (Trueblood et al.,

1996). A description in terms of molecular displacement

coordinates like translation, rotation, bond stretching, angle

bending, torsion etc. would be much closer to the chemist's

way of thinking about interatomic and intermolecular inter-

actions. The necessary transformations between positional and

molecular displacement coordinates are well known. The

transformation of atomic displacement coordinates u into

molecular displacement coordinates S is

S � Bu �9�
and has been discussed in detail by Wilson et al. (1955) and by

Cyvin (1968). For the reverse transformation

u � AS; �10�
see Higgs (1955) and Cyvin (1968). It follows that A � B � I,

where I is an identity matrix.

The matrices A and B also relate the corresponding mean

square displacement matrices (He & Craven, 1985):

RS � BRxBT �11�
Rx � ARSAT; �12�

where Rx is the mean square displacement matrix in atomic

displacement coordinates and RS is the matrix of mean square

displacements along molecular coordinates. In principle, A

and B are square matrices because the number of independent

degrees of freedom for a molecule is independent of the

coordinate system. In practice, some degrees of freedom can

be much more important than others. For example, in the case

of rigid-body motion, only the `external' modes of vibration,

i.e. the three translations of the centre of mass and the three

librational oscillations of the molecule about its centre of

mass, are important. Thus, the number of degrees of freedom

is only six and the RS matrix has only six rows and columns,

whereas Rx has dimensions 3n � 3n. In this case, A and B are

rectangular matrices. This has the consequence that A cannot

be calculated from A � B � I. However, the methods to

calculate A and B given in the references above are still valid.
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5. The model

Cyvin (1968) expresses the dependence of the molecular mean

square amplitude matrix RS on molecular displacement coor-

dinates S as follows:

RS � hSSTi � LdLT; �13�
where L is the transformation matrix from normal to mol-

ecular displacements. Unlike e [equation (8)], L is not mass

weighted; this implies LLT � G, where G is Wilson's matrix of

reduced masses (Wilson et al., 1955). The transformed equa-

tion (13) is

RSGÿ1L � Ld: �14�
This relationship is remarkable because it is closely related to

Wilson's relationship between force constants F and vibra-

tional frequencies (Wilson et al., 1955):

GFL � Lk: �15�
Equations (14) and (15) are both eigenvalue problems. Their

eigenvectors L are the same and their eigenvalues, k and d,

respectively, are both functions of the frequencies. In the

classical limit, normal mode analysis from mean square

amplitudes [equation (14)] is the inverse of normal mode

analysis from vibrational frequencies [equation (15)] because

for a classical oscillator �j � !2
j and �j � kBT=!2

j . The inverse

relation between GF and RSGÿ1 implies that RS � kBTFÿ1. In

the mean ®eld approximation used here, F is an effective

force-constant matrix related to the average of the q-depen-

dent dynamical matrices [for the analogous formulation of the

relation between Rx and the dynamical matrix D(q), see

Scheringer (1972)].

More symmetrical and more practical forms of (14) and (15)

are obtained as follows: G and Gÿ1 are decomposed into the

lower triangular matrices g and gÿ1 (Aldous & Mills, 1962):

G � ggT; Gÿ1 � �gÿ1�Tgÿ1: �16�
The matrix L is rede®ned in terms of g and the orthonormal

eigenvector matrix V (FoÈ rtsch, 1997):

gV � L: �17�
[gV is analogous to mÿ1=2e in equation (8).] This gives

RS � gVdVTgT �18�
F � gÿ1VkVT�gÿ1�T : �19�

The atomic mean square displacements in Rx thus depend on

the molecular and normal mode mean square displacements

through a series of straight-forward transformations:

Rx � ARSAT � AgVdVTgTAT : �20�
In the rest of this paper, it is shown how a maximum of

information on the motion of molecules in their mean crystal

®eld, i.e. on V, d and !j, can be extracted from the limited

information available on Rx, i.e. from the ADP's.

6. The indeterminacy problem

Wilson's and Cyvin's formulations of the normal-mode

problem are not only formally similar but they also suffer from

a similar practical problem. In the spectroscopic approach,

force constants are extracted from observed vibrational

frequencies. The number of observable frequencies is

proportional to the number of atoms, insuf®cient to determine

the independent elements of the force-constant matrix F

whose number is proportional to the square of the number of

atoms.

In the mean-square-amplitude approach, vibrational

frequencies and collective atomic displacement vectors must

be extracted from the experimentally observable ADP's, the

3 � 3 diagonal blocks of Rx. This means that for an n-atomic

molecule 6n observations are available, not enough to deter-

mine the 3n(3n ÿ 1) independent components of the dis-

placement vectors V and the corresponding 3n frequencies.

This indeterminacy is sometimes referred to as the second

phase problem in crystal structure determination: only ADP's

U(k, k) that measure the extent of atomic displacements are

determinable from crystal structure analysis; correlation

ADP's U(k, k0) that ®x their relative phases are indetermin-

able.

In both cases, the indeterminacy problem can be overcome

or at least alleviated in several ways: (a) by increasing the

Figure 3
Mean square displacement of a single harmonic oscillator as a function of
temperature. The zero-point amplitude �0 and the linear dependence at
high temperature are shown by dotted lines. Note that the intersection of
the quantum and classical regimes occur at half the Einstein temperature
(�E=2), and that above the Einstein temperature the mean square
amplitude closely follows the classical linear description.



amount of independent information; (b) by restricting the

model of motion to its most essential parts, i.e. by reducing

the number of model parameters; (c) by making full use

of symmetry. These possibilities will be addressed in the

following three sections.

7. The temperature dependence of MSDA's

In vibrational spectroscopy, additional information is obtained

from isotopically substituted molecules, for which the changes

in the potential-energy function and thus in F are negligibly

small. The isotopic shifts of the frequencies of vibration allow

one to determine off-diagonal elements of the force-constant

matrix (Herzberg, 1950).

In mean-square-amplitude studies, there is a simpler way to

obtain additional information, namely by measuring the

temperature dependence of ADP's, which is determined

entirely by the temperature dependence of d [see (20)]. Fig. 3

shows the temperature dependence of an element �j of d:

�j � �h- =2!j� coth�h- !j=2kBT�: �21�
At low temperature, �j simpli®es to the temperature-inde-

pendent quantity:

�j � h- =2!j � �0: �22�
The limiting behaviour at high temperature coincides with that

of a classical harmonic oscillator:

�j � kBT=!2
j : �23�

The classical mean square amplitude extrapolates to zero at

T � 0 K, whereas the quantum-mechanical one assumes a

®nite value as T approaches 0 K. This difference in limiting

behaviour allows the retrieval of the off-diagonal elements of

the Rx matrix from the temperature dependence of its diag-

onal 3 � 3 blocks. This is easily illustrated with the help of the

simple example mentioned earlier: a homonuclear diatomic

molecule in a centrosymmetric crystal environment. The

motions along the axis of the diatomic include molecular

translation and bond-length deformation. The motions

perpendicular to the axis are translation and libration. In both

cases, the mean square amplitudes can arise from one or the

other or from some combination of these motions (Fig. 4).

Assuming that the total mean square amplitude of atoms k

and k0 in a given direction has contributions from the two

independent motions A and B, with frequency !A and !B,

respectively, one can write:

hu2�k;T�i � hu2�k0;T�i
� hu2�k;T�iA � hu2�k;T�iB
� h- =�2�A!A� coth�h- !A=2kBT�
� h- =�2�B!B� coth�h- !B=2kBT�; �24�

where �A and �B are the reduced masses of motion A and B,

respectively. (For the translational motion of the diatomic

molecule � � 2mk, while for the bond stretching � � mk=2,

and for the librational motion � � r2mk=2, with r the inter-

nuclear separation.)

In the high- and low-temperature regimes, the expressions

for the total mean square amplitude become

hu2�k; 0�i � h- ��ÿ1
A !

ÿ1
A � �ÿ1

B !
ÿ1
B �=2 �25�

hu2�k;T !1�i � kBT��ÿ1
A !

ÿ2
A � �ÿ1

B !
ÿ2
B �: �26�

From measurements at a single temperature, it is impossible to

distinguish between the two contributions hu2(k, T)iA and

hu2(k, T)iB. However, if hu2(k, T)i can be measured in both

the zero-point and classical regimes, !A and !B and thus

hu2(k, T)iA and hu2(k, T)iB can be determined because (25)

and (26) are linearly independent in !A and !B. As a conse-

quence, it becomes possible to calculate the interatomic or

correlation mean square amplitudes. For the homonuclear

diatomic, the result is simply

hu�k;T�u�k0;T�i � hu�k;T�u�k0;T�iA � hu�k;T�u�k0;T�iB
� hu2�k;T�iA ÿ hu2�k;T�iB: �27�

Thus, the off-diagonal elements of Rx, which are not available

from Bragg diffraction experiments, have been determined

indirectly from the temperature dependence of the diagonal

elements. This solves the phase problem.

The information on the two types of motion can be obtained

even if ADP's have been measured in a temperature range

that is too small for one of the normal modes (say mode B) to

be signi®cantly excited:

hu2�k; 0�i � h- ��ÿ1
A !

ÿ1
A �=2� h- ��ÿ1

B !
ÿ1
B �=2 �28�

hu2�k;T !1�i � kBT��ÿ1
A !

ÿ2
A � � h- ��ÿ1

B !
ÿ1
B �=2: �29�

Mode B gives a constant contribution to the mean square

amplitude which is independent of temperature. Its contri-

bution can be calculated from the high-temperature behaviour

alone by linear extrapolation of hu2(k, T)i to 0 K.

What has been shown for the homonuclear diatomic is true

in general. For a treatment of more complex molecules, the

more complicated equation (20) is necessary but the basic idea

for solving the phase problem of atomic motions remains the

same: for any molecule, irrespective of the number of atoms,

ADP's determined in the high- and low-temperature limits

provide information on the correlation of atomic motion.

8. Low-frequency and high-frequency approximations

The indeterminacy problem can be further mitigated by

reducing the model of motion to the minimum necessary to

account for the main features in the experimental data. In this

section, we discuss the simpli®cations that follow if low and

high frequencies are treated separately.

Acta Cryst. (2000). A56, 403±412 BuÈrgi and Capelli � Dynamics of molecules. I 407
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Figure 4
Equiprobability ellipsoids of a homonuclear diatomic. The ADP
components perpendicular to the molecular axis may be due to rigid-
body translation (motion A, left) or rigid-body libration (motion B, right)
or some combination of both.
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The eigenvalues �j or �j are split into two groups: one

containing the low-frequency motions (subscript L) and the

other containing the high-frequency motions (subscript H).

Similarly, the internal coordinates S can be partitioned into

soft (s), intermediate (i) and hard (h) coordinates associated

with small, intermediate and large force constants, respec-

tively. From this, a corresponding subdivision of the eigen-

vector matrix V follows [equation (30)]. In principle, the

eigenvectors of all normal modes may contain contributions

from all molecular coordinates. However, hard coordinates

are usually involved in high-frequency modes (VhH) while soft

coordinates contribute primarily to low-frequency motions

(VsL). A clear line between hard and soft coordinates cannot

usually be drawn; there are always a few intermediate coor-

dinates that mix into both high- and low-frequency normal

modes (ViL and ViH). It is unlikely that hard deformation

coordinates contribute substantially to the eigenvector of a

low-frequency normal mode and vice versa. It is therefore a

good approximation to set the corresponding elements of V to

zero.

d �
dL 0

0 dH

264
375; V �

VsL 0

ViL ViH

0 VhH

2664
3775: �30�

The subdivisions of d and V require corresponding subdivi-

sions of g and A:

g �
gss 0 0

gsi gii 0

gsh gih ghh

2664
3775; A � As Ai Ah

h i
:

�31�
With this approximation, the RS matrix [equation (18)] sepa-

rates into

RS � g

VsLdLVT
sL VsLdLVT

iL 0

ViLdLVT
sL ViLdLVT

iL 0

0 0 0

2664
3775

8>><>>:
�

0 0 0

0 ViHdHVT
iH ViHdHVT

hH

0 VhHdHVT
iH VhHdHVT

hH

2664
3775
9>>=>>;gT

� RS
L � RS

H : �32�
The elements of RS

L derive from the strongly temperature

dependent elements of dL associated with the low-frequency

motions. The elements of RS
H can be viewed as a constant

contribution to RS (and thus to Rx) because of the negligible

temperature dependence of the high-frequency contribution

from dH.

The partitioning of RS into two terms, one temperature

dependent and another temperature independent, shows that

not all 3n normal modes need to be considered explicitly in the

calculation. The low-frequency normal modes, which usually

are far less in number than the high-frequency ones, are

suf®cient (the dL block is much smaller than the dH block).

Furthermore, not all 3n molecular deformation coordinates

will contribute signi®cantly to the low-frequency modes and

therefore the V matrix can be drastically reduced to the two

blocks labelled VsL and ViL in (32). V then becomes a

rectangular matrix of size p � q, where q is the number of low-

frequency normal modes and p is the number of coordinates

needed to represent these normal modes; in general,

q < p < 3n. Note the difference between the low-frequency

approximation presented here and the high-frequency

approximation usually given in text books on normal-mode

analysis (see for example Wilson et al., 1955). In the latter, it is

usually assumed that the number of high-frequency normal

modes equals the number of hard coordinates (q � p). Thus,

the spectroscopic problem simpli®es to:

FH � gÿ1
hh VhHkHVT

hH�gÿ1
hh �T : �33�

The analogous low-frequency approximation of RS would be

RS
L � gssVsLdL�T�VT

sLgT
ss �34�

but was found to be too restrictive in practice, because both

ViL and RS
H can sometimes contribute signi®cantly to the

ADP's as will be illustrated in the accompanying paper

(Capelli et al., 2000).

After combination of (20) and (32), the mean square

displacement matrix becomes

Rx�T� � ARS�T�AT

� As Ai

� � gss 0

gsi gii

� �
VsL

ViL

� �
dL�T� VT

sL VT
iL

� �
� gT

ss gT
si

0 gT
ii

� �
AT

s

AT
i

� �
� Ai Ah

� �
RS

H

AT
i

AT
h

� �
: �35�

The second term, which depends on the high-frequency

normal modes, does not show a signi®cant variation with

temperature and may be considered as a small correction ""x;

only its 3 � 3 diagonal blocks can be obtained from and are

relevant for Rx(T). The 3 � 3 block ""x(k) for atom k is usually

expressed in a local molecule-based coordinate system and

transformed to the working coordinate system of Rx according

to ""x � T""TT. This allows the same matrix "" to be used for

chemically and crystallographically equivalent atoms and to

keep the number of independent components of ""x minimal.

The ®nal form of the mean square amplitude matrix, the

one used for numerical calculations, is thus

Rx � AgVdVTgTAT � ""x: �36�
In the interest of a compact notation, the indices s, i and L are

dropped from here on. Note that (36) and all following

expressions are not as general as (20), although they look very

similar.

9. Symmetry

A third aspect of the indeterminacy problem is symmetry. It

reduces the number of parameters to be determined from the



experimental observation by requiring speci®c elements of V

and d to be equal or zero (Cotton, 1990).

Displacement coordinates S and normal coordinates can be

classi®ed according to the irreducible representation of the

point group of the molecule. This implies that each normal

mode is built from only a limited number of displacement

coordinates, namely those with a common irreducible repre-

sentation. As a consequence, the off-diagonal blocks between

different irreducible representations are zero in the eigen-

vector matrix V, in the symmetrized force constant matrix F

and in the mean square displacement matrix RS (Bishop,

1973).

Eigenvalues of symmetric systems can show degeneracy.

Any linear combination of eigenvectors associated with

degenerate eigenvalues is a valid eigenvector of the problem

(Atkins, 1983). The direct consequence is that the eigenvectors

associated with degenerate degrees of freedom are not

uniquely determined. To prevent singularities in the numerical

least-squares calculations described in the next section,

appropriate constraints must be applied to the eigenvector

matrix. Accidental degeneracy, which is dif®cult to predict,

must be handled on a case-to-case basis.

10. Parameter determination from observed ADP's

The unknowns in (36) are the elements of the eigenvector

matrix V, the normal frequencies !j and the diagonal 3 � 3

blocks of ""x. They are determined via a non-linear least-

squares procedure. First, (36) is expanded in a Taylor series to

®rst order in the parameters

d � d�!0� � d0�!00��x �37�
V � V0 ��V �38�
"" � ""0 ��""; �39�

where x0, V0 and ""0 are the parameter values for a suitable

starting model. The orthonormality condition on the eigen-

vectors is expanded in a similar way:

0 � �V0�T�V� ��V�TV0; �40�
where 0 is the zero matrix.

Equation (36) then becomes

Rx � Rx;0 ��Rx

� AgV0d�!0��V0�TgTAT � T��0T

�Ag��Vd�!0��V0�T � V0d�!0���V�T
� V0d0�!0��x�V0�T �gTAT � T�""T: �41�

The ®rst two terms in the detailed expression on the right

represent the mean square displacement matrix Rx,0 of the

starting model and the second two terms express the deviation

�Rx between the starting model and the observations in Rx
obs.

An iterative least-squares program has been written (FoÈ rtsch,

1997) to minimize the weighted sum of the deviationsP
ij wij��Rx

obs�ij ÿ �Rx�ij�2 by optimizing the parameter shifts

�x, �V and �"". The program, which is still under develop-

ment, is available from the authors on request.

11. Discussion

The delocalized lattice dynamical model for describing

vibrations in crystals and interpreting ADP's measured as a

function of temperature has been reduced to a localized

molecular one with the help of a mean ®eld approximation.

How good is this approximation? As indicated earlier, the

answer depends on the shape of the dispersion surfaces;

whenever phonon dispersion is small over a substantial part of

the Brillouin zone, entire phonon branches may be replaced

by local normal modes. This is more likely to be true for the

high-frequency optic branches than for the low-frequency

optic or acoustic ones. Dispersion of the latter is unavoidable,

especially in the inner part of the Brillouin zone (this is why

the Einstein approximation is usually applied only to optical

branches).

The error involved in approximating dispersion curves

with a single normal-mode frequency can be estimated by

comparing the projected lattice dynamical density of states,

gs(!), for coordinates Sj and the projected mean ®eld density

of states gE
s �!� [for projections of the density of states in

electronic band theory, see Hoffmann (1988)]. If the maxima

of the former are concentrated around the discrete frequen-

cies of the latter and if the dispersion in the neighbourhood of

such maxima is limited, then the discrete mean ®eld model is a

good approximation of the lattice dynamical one (Figs. 1 and

2). Under these conditions, the average hgs�!�=!i in the

neighbourhood of a maximum of gs(!) is closely similar to the

average hgs�!�=!2i1=2 and thus the respective contribution to

the mean square amplitude hS2
j i at low temperature (� h- =2!)

can be described by the same effective frequency as the

corresponding contribution at high temperature (� kBT=!2).1

The interpretation of experimentally measured ADP's

presented here is a natural extension of previous analyses. As

early as 1956, Cruickshank proposed a method to calculate

translational and rotational mean square amplitudes of a rigid

molecule from ADP's (Cruickshank, 1956a,b). In 1968,

Schomaker & Trueblood generalized Cruickshank's approach

and their TLS analysis is now the method most frequently

applied for studying ADP's (Schomaker & Trueblood, 1968).

TLS analysis is a special case of relating positional to mol-

ecular mean square amplitude displacements; it uses a very

limited molecular mean square amplitude matrix, which only

includes the six external degrees of freedom, i.e. the mean

square translation and libration tensors L and T and the screw

coupling tensor S.
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1 To estimate the effects of averaging, the two values h1=!i and h1=!2i1=2 have
been calculated and compared for simple, but realistic, spherically symmetric
dispersion curves, representative of both optic and acoustic branches. The
two mean values typically differ by about 5% in the case of optical branches
and up to 10% for acoustic branches, showing that the approximation
leads to an error of about the same magnitude as the experimental error in
the ADP's measured at low temperatures. Furthermore, for both optic and
acoustic branches, h1=!i and h1=!2i1=2 correspond to the ! value at
q � 0:7ÿ 0:8��=2a�, con®rming the relevance of the outermost shells of the
Brillouin zone in determining the magnitude of ADP's, also in the case of
acoustic branches.
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Rx � ARSAT � A
L S

ST T

� �
AT : �42�

Rigid-body analysis has a signi®cant shortcoming: the trace of

S cannot be determined because it depends on correlation

amplitudes U(k, k0), which are not determinable by Bragg

diffraction.

The rigid-body procedure has been extended in several

ways to account for relative motions of rigid molecular

segments (Johnson, 1970a; Dunitz & White, 1973; Trueblood,

1978; Trueblood & Dunitz, 1983; Schomaker & Trueblood,

1998; He & Craven, 1985, 1993; BuÈ rgi, 1989). When an addi-

tional coordinate ' is used to describe intramolecular motion,

the expression for Rx becomes

Rx � ARSAT � A

L S hl'i
ST T ht'i
hl'iT ht'iT h'2i

24 35AT; �43�

where h'2i is the mean square amplitude of an internal

motion, hl'i and ht'i are the coupling terms between internal

motion and, respectively, libration and translation. In such

models, there are additional indeterminacies; their number

increases rapidly with the number of internal motions

considered (BuÈ rgi, 1989; Schomaker & Trueblood, 1998).

Our method of ADP analysis introduces three new features:

temperature-dependent low-frequency normal modes d(�),

the relation between normal mode and molecular displace-

ments (gV) and temperature-independent high-frequency

contributions ""x to the ADP's. From this, (43) becomes

Rx��� � A

L��� S��� hl'���i
ST��� T��� ht'���i
hl'���iT ht'���iT h'2���i

264
375AT � ""x

� AgVd���VTgTAT � ""x �44�
(here the symbol � represents the temperature to distinguish it

from the translational tensor T). The explicit temperature

dependence of d(�) and thus of Rx(�) is the key to overcoming

the indeterminacy problems mentioned above because it

allows one to express the ADP's in terms of the same

displacement vectors Vj and frequencies !j at all tempera-

tures2 and avoids a determination of the elements of L, S, T etc.

at each temperature separately.

The relative contribution of the correction term ""x to Rx(�)

is usually small at high temperatures but may become

important at very low temperatures. The term ""x can also

absorb temperature-independent contributions to Rx other

than those due to high-frequency motions, e.g. disorder (static

or dynamic) and systematic error (both in the diffraction data

and in the model used to interpret these data). Sometimes,

independent information is useful in interpreting the principal

origin of the values of ""x. Mean square amplitudes due to

internal motions can be evaluated from IR and Raman data,

with the help of (18) and (19), and these values can be directly

compared to ""x derived from diffraction data. Empirically, we

®nd that the re®ned values of "" are often in good agreement

with the ones calculated from spectroscopic data (Capelli et

al., 2000), provided effects of disorder, anharmonicity or large

systematic errors can be excluded or properly accounted for.

In the case of disorder, the components of the "" tensors tend

to be signi®cantly bigger than the spectroscopic values

(Capelli, 1999), while in the case of anharmonicity they are

often smaller or even negative (BuÈ rgi et al., 2000).

The theory outlined above is based on the harmonic

approximation of vibrational motions. At low temperature,

this approximation may be satisfactory but with increasing

temperature thermal expansion tends to reduce the crystal

®eld. In an extension of the model presented here, an-

harmoncity has been taken into account summarily by a

simple GruÈ neisen-type correction of the frequency of each

normal mode:

!j � !0
j �1ÿ 
G

j �T�; �45�
where 
G

j is known as the GruÈ neisen constant of frequency !j,

� is the thermal expansion coef®cient and T is the tempera-

ture. A more detailed discussion of this modi®cation is given

elsewhere (BuÈ rgi et al., 2000).

There are some dif®culties in applying the model presented

here to interpreting the temperature evolution of ADP's. The

®rst is the choice of a suitable starting model of motion for

the least-squares optimization [!0, V0, ""0, equation (41)]. As

mentioned in x8, Low-frequency and high-frequency approxi-

mations, only a few low-frequency normal modes can usually

be derived from the observed ADP's. Their number needs to

be ®xed and the internal coordinates, which are likely to

contribute to these modes, must be selected. Often the rigid-

body model with six normal modes composed of translational

and librational displacement coordinates represents a good

starting point. Such a minimal model, which should also

include one "" tensor per element, can give useful information

regarding the presence of disorder or of anharmonicity and

can serve as a basis for elaborating a more complete model

including internal degrees of freedom (e.g. torsion around

single bonds, out-of-plane bending etc.). If the latter mix

signi®cantly with librations and translations, they contribute

signi®cantly to the ADP's. They may even dominate one or

more low-frequency normal modes. The choice of coordinates

depends somewhat on the intuition of the user and is not

always unique. Note, however, that there are tests on the

results: they must be physically meaningful, i.e. RS and ""x must

be positive de®nite. In addition, the goodness of ®t of any

model has to conform to the usual statistical criteria.

The range of experimentally accessible temperatures can be

a second factor limiting the analysis of ADP's. The phase

problem can be solved reliably only when data sets in both the

zero-point and classical regimes are available and, of course,

when nobs > npar. If no ADP's from the quantum regime are

2 So far, only one exception to this conclusion has been found. Because the
general expressions relating U(k) to the diagonal elements of S depend on
differences Sii ÿ Sjj, the individual elements Sii, Sjj cannot be determined from
ADP's at a single temperature but can be derived from the temperature
evolution of the ADP's and thus of the differences Sii ÿ Sjj . However, for
molecules with the cubic molecular symmetries 23(T) and 432(O), all diagonal
elements of S are equal (see Table 4 in Schomaker & Trueblood, 1968), i.e. the
difference Sii ÿ Sjj is zero at all temperatures. It is therefore not possible to
determine Sii and a unique eigenvector matrix V.



available, it may not be possible to identify the low-frequency

modes uniquely; however, extrapolation to 0 K of the

temperature-dependent contributions may still allow the

determination of the temperature-independent ""'s. It is dif®-

cult to quantify the optimal number of measurements and the

respective measurement temperatures because these depend

on the system under study (symmetry, number of independent

observations) and on the model of motion (coordinates,

frequencies of vibrations, total number of parameters); of

course, the more the better. Ideally, experiments should be

designed to optimize the analysis of speci®c models of motion

(Hamilton, 1964).

The third problem is systematic error in the ADP's which

may be due to limited resolution of the diffraction experiment,

inappropriate structure-factor re®nements, lack of corrections

for absorption and extinction etc. In our experience, such

errors tend to be absorbed into the translational degrees of

freedom and in the "" tensors, giving rise to model-dependent

frequencies with relatively large standard uncertainties in the

®rst case and to negative or unreasonably large positive ""
values in the latter. Systematic errors can also be introduced

through the model of motion, e.g. by an inappropriate choice

of displacement coordinates or of the number of normal

modes or by inadequate corrections for anharmonicity.

ADP's from X-ray diffraction tend to be more dif®cult to

interpret than those from neutron diffraction data unless they

are the result of high-quality charge-density studies. This is

because ADP's tend to absorb features of valence-electron

density if spherical atomic form factors are used in standard

structure re®nements (Brock et al., 1991; Pichon-Pesme et al.,

1995). This leads to unusual "" tensors, re¯ecting a combination

of intramolecular motion and artefacts from a promolecule

re®nement.

Finally, one more word on the correlation of atomic

motions. As mentioned earlier, single-crystal X-ray or neutron

diffraction analysis provides mean square displacements from

mean positions (ADP's) but not the correlation of atomic

motion. Are there techniques that can measure correlation

information directly? EXAFS spectroscopy (or gas-phase

electron diffraction) measures distances between atoms and

their mean square ¯uctuations. Distance ¯uctuations depend

on the displacements of two atoms from their mean positions

as well as on the correlation of these displacements (Johnson,

1970b). EXAFS measurements, preferably over a range of

temperature, thus provide information that is complementary

to ADP's from single-crystal diffraction and is easily intro-

duced into the analysis of ADP's described here.

12. Conclusions

In this contribution, we have presented a method to analyse

ADP's that goes a step beyond the conventional rigid-body

or segmented-rigid-body approaches applicable at a single

temperature (Schomaker & Trueblood, 1968; Johnson, 1970a;

Dunitz & White, 1973; Trueblood, 1978; Trueblood & Dunitz,

1983; Schomaker & Trueblood, 1998; He & Craven, 1985,

1993). The method assumes a physically plausible model of

the temperature evolution of ADP's in a mean crystal ®eld

and leads to a description of motion in terms of effective

frequencies and correlated atomic displacements. It allows one

to test the quality of the results of diffraction experiments,

especially the consistency of ADP's measured at different

temperatures and with different methods; it can reveal the

presence of disorder, anharmonicity and systematic error in

the diffraction data. In the best case, the model of motion

obtained with this method adds the dimension of molecular

dynamics to the usual results of single-crystal structure

analyses.
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